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Soliton energies in the standard map beyond the 
chaotic threshold 

K Furuya and A M Ozorio de Almeida 
lnstituto de Fisica, UNICAMP, Campinas, 13081 SP, Brazil 

Received 9 April 1987 

Abstract. The Birkhoff-Moser theorem guarantees the existence of an analytical reduction 
to its normal form of an area-preserving map in the neighbourhood of an unstable fixed 
point, The stable and unstable manifolds emanating from this point are then simply the 
images of the axes in the normal coordinates. For sufficiently high parameter values of 
the standard map, the series for the manifolds can be resummed into a closed form, 
providing good approximations to the first loops of the manifolds. We thus obtain simple 
approximations for a pair of homoclinic orbits for parameters where most orbits are chaotic. 

The Frenkel-Kontorova model consists of an infinite sequence of equal springs and 
masses under the action of a periodic potential. The configuration where all the masses 
lie at the minima of the potential corresponds to the unstable fixed point of the standard 
map. A soliton or discommensuration, where one of the minima is missed, is represented 
by a homoclinic orbit. Using the normal form we calculate the soliton energy and its 
pinning energy. Good agreement is found with the pinning energy of Pokrovsky, obtained 
as a perturbation from the continuum approximation. 

1. Introduction 

The Frenkel-Kontorova model consists of an infinite number of equal springs, joining 
an infinite sequence of unit masses at the positions e,, acted on by the periodic potential 

(1) 
This is sketched in figure l ( a ) .  The initial problem is to determine the equilibrium 
configuration for the position ei under the action of the potential and the elastic force, 
as shown in figure 1 ( b  j .  In  other words, we seek the configuration { O i } ,  which minimises 
the energy 

v(e,) = a ( i  -COS e,). 

as a function of the length a of the free springs and cy, the strength of the potential. 
Some of the many applications of the Frenkel-Kontorova model in solid state physics 
are reviewed by Bak (1982). 

Aubry (1978) presented a new treatment of this problem based on two main ideas. 
The first is to treat the infinite system as the limit of a finite one with N masses and 
fixed boundary conditions, or more precisely a fixed distance between el and O N .  
Except for a constant, the energy is then given by 

w e , } )  =E 0, = E  [+(e,+,  - e,)2+ v(e ,d i .  (3) 
I t 
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Figure 1. ( a )  Free chain with springs of length a and periodic potential V( 0 )  = a( 1 -cos e) ;  
( b )  minimum energy configuration for a chain where a = T. It is energetically favourable 
for the springs to be alternately stretched and compressed. This solution corresponds to 
a period-2 orbit in the standard map. 

The second basic idea is now to treat @ not as a static energy but as the action of a 
dynamical system with one degree of freedom and discrete time. The paths (e,, I,) in 
two-dimensional phase space, for which the action Q, is stationary between 8, and O N ,  
are exactly the trajectories of the dynamical system. These result from successive 
canonical transformations ( O n ,  I , )  + (e,+, , I ! + , ) ,  implicitly generated through the 
equations 

I.,+, = a@,/ae,+, I ,  = -a@.,/ae,. (4) 

Each transformation then has the explicit form 

e f = e + I  Z ‘ =  I + a  sin(O+Z) ( 5 )  

recognised as the Taylor-Chirikov standard map. 
The above identification is extremely useful because of the great amount of analytical 

and computational attention the standard map has received, as reviewed by Lichtenberg 
and Lieberman (1983). For a = 0 the trajectories move along horizontal straight lines 
in phase space, corresponding to constant separation between the masses. These 
solutions are not pinned, i.e. we can translate the whole configuration by any A@, thus 
obtaining an equivalent solution with the same energy. The KAM theorem implies that 
unpinned solutions, whose averaged rotations are incommensurate with the potential, 
continue to exist for small a > 0. Beyond a - 1, the chaotic threshold, there are no 
more unpinned solutions, the majority of the phase space being taken up by ‘apparently 
random’ orbits. For all a there are periodic solutions also. The simplest is the 
dynamically unstable fixed point at the origin, corresponding to placing all the masses 
at the potential minima. Another solution is the dynamically stable fixed point at 
8 = T, corresponding to the statically unstable solution of placing all the masses on 
the crests of V(8). In  the latter case most points initially close to the fixed point 
remain in its neighbourhood, even though this is not a minimum energy configuration 
for the static chain. 
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The map orbits correspond to stationary energy configurations, but not necessarily 
to energy minima, as in the example above. In  a remarkable series of papers (Aubry 
1981, 1983a, b, Aubry and  Le Daeron 1983, De Seze and  Aubry 1984) Aubry and  
collaborators obtained conditions for minimising the energy of systems more general 
than the Frenkel-Kontorova model. It is there proved that unstable periodic orbits, 
corresponding to rotations of n 2 r ,  minimise the energy. Furthermore, homoclinic 
orbits, which tend to the periodic orbit for i + *a, are also good solutions. In the 
continuum approximation, valid for a + 0, these solutions are known as solitons, 
though the appropriate term proposed by Aubry for the discrete system is discom- 
mensuration. 

The homoclinic points are intersections of the stable manifold, a continuum of 
points which tends to the periodic orbit for i + E, and the unstable manifold, similarly 
defined for i + -CO. Generally these manifolds intersect transversely in the standard 
map. Hence the solitons are pinned: we cannot translate the discommensuration by 
a lattice spacing without overcoming an  energy barrier, even as CY + 0. Pokrovsky 
(1981) was able to estimate the pinning energy in this limit for the soliton which 
accumulates on the unstable fixed point, as a perturbation from the continuum limit. 

Our purpose is to apply analytical methods of finding homoclinic orbits to the 
calculation of the energy of this soliton and its pinning energy, beyond the chaotic 
threshold. The basis of these computations is the Birkhoff normal form (Birkhoff 1920) 
for the map in the neighbourhood of the unstable fixed point. Moser (1956) proved 
that the normal form converges in a neighbourhood of the fixed point and  Ozorio d e  
Almeida er a1 (1985) and  Da Silva Ritter et a1 (1987) showed that the domain of 
convergence can actually extend far out along the stable and unstable manifolds, 
enabling the calculation of homoclinic points. After a preliminary discussion of 
homoclinic intersections and  the definition of pinning energy in § 2, we present the 
method in § 3. A partial resummation of the series is possible, which leads to excellent 
approximations in closed form for the stable and  unstable manifolds near a pair of 
homoclinic points. In § 4 we present computations of the soliton energy as well as the 
pinning energy. It is found that Pokrovsky’s result can be extrapolated for parameters 
a,  way beyond those for which his arguments hold, i.e. as far as a - 10. 

2. Homoclinic points and soliton energies 

Figure 2 shows the homoclinic crossing of a pair of stable and  unstable manifolds 
emanating from the unstable fixed points at 6 = 0 and 27r for cy = 2. These are calculated 
by placing many points very close to the origin on the linear approximation to the 
unstable manifold and iterating their orbits under the standard map. Likewise we 
place points on the stable manifold, which are then iterated under the inverse of the 
standard map: 

6 ’ = - 6 + l + c y  sin 6 

I’ = I - CY sin 6. 

The loops of the unstable manifold become arbitrarily long as it returns to the 
neighbourhood of the fixed point at 6 = 2 r ,  leading to many further intersections not 
shown here, corresponding to a pair of homoclinic orbits whose points alternate along 
both the stable and the unstable manifolds. These orbits have different energies, so 
that only the one with the lowest energy corresponds to the physical discommensuration. 
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Figure 2. Homoclinic crossing of an unstable manifold leaving 6 = 0 and stable manifold 
arriving at 0 = 2 ~ r ,  obtained by iterating the map directly for a = 2. 

We can sort out the roles of the two homoclinic orbits by considering the symmetry 
about 6 = 7r of the Frenkel-Kontorova problem. Though the map itself has no reflection 
symmetry about this line, the 8 coordinates of the discommensuration must evidently 
be symmetric. We can consider the proper discommensuration as the limit of a long 
chain with N springs, such that the endpoints are fixed masses: B O = O  and ON = 
27r( N + 1). The change in energy caused by the shift 

e :  = e,+, (7 )  
of all the masses, with the exception of the endpoints, tends to zero as N --* CO. Let us 
consider the value of i for which 8, is closest to 7r with 8, < 7 r ;  then &+, = 27r - 8,. We 
can fix the ith mass in the chain at any point 8 in the interval (e , ,  27r - 8,). There 
results two subchains respectively with i and ( N  - i )  springs whose other endpoints 
are fixed at the origin and at 27r( N + 1). The masses in between will arrange themselves 
so as to minimise separately the energy in each subchain. The total energy CD is then 
a function of the single parameter 8. Placing 8 at the maximum of the potential, 8 = 7r, 

the energy CD( 7 r )  is obviously stationary with respect to 8. Since this energy is already 
minimal with respect to all other parameters e,, it follows that cP( 8 = 7 r )  is the energy 
of a stationary configuration {e , } ,  i.e. this is one of the two homoclinic orbits. 

Evidently we minimise potential energy by avoiding the top of the 0 = 7r barrier 
in the potential, so this solution does not correspond to the physical discommensuration. 
The energy cP(8 = 7 r )  = cPm is the maximum in the continuous traversal from e, to 
27r - 8,. Thus, if CDs is the energy of the other homoclinic orbit, corresponding to the 
true discommensuration, we can define the pinning energy as 

E ,  = cPm -cPs (8) 
following Aubry (1983a, b). 
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3. Homoclinic points and the normal form 

We can expand the standard map ( 5 )  in Taylor series about the origin, an  unstable 
fixed point: 

e i = o + i  

I ' = a B + ( l + a ) l + a  c ( -1)"  ( e + I ) Z n + l ,  

( 2 n  + I ) !  

The linear part is now diagonalised by means of the linear canonical transformation 

x = z - ( A - I - l ) e  

Y = I - ( A  - 1)e 

where 

A = ( 1  + ~ y / 2 ) + [ ( a / 2 ) ~ + a ] " ~  

is an eigenvalue of (9) and A - '  is the other one. The transformed map thus becomes 

According to Birkhoff (1920)  there exists a canonical non-linear transformation 
given by the formal Fourier series 

k 

y =  7?+ i c M-'7?/ 
k = 2  / = 0  

such that the map in the (5, 7) variables takes the simple form 

Table 1. Numerical computation of homoclinic points from the full normal form. 

(2 1 L / 2 i r  0-1271 1,1271 9,1271 

1.0 0.337 814094 0.330 945 436 0.282 816 720 
2.0 0.500 463 21 5 0.249 188 126 0.355 829 181 
3.0 0.606 434 800 0.196 783 198 0.390 334 334 
4.0 0.675 949 305 0.162 021 080 0.41 1 084 837 
5.0 0.724 181 488 0.137 910 662 0.425 051 327 
6.0 0.760 678 109 0.118 893 792 0.435 133 358 
7.0  0.800 778 759 0.090 329 620 0.442 775 775 
8.0 0.811 845 553 0.091 716 110 0.448 778 723 
9.0 0.826 834 139 0.085 790 016 0.453 624 171 

0.507 164 126 
0.500 010 055 
0.499 996 923 
0.500 000 368 
0.500 000 070 
0.500 000 101 
0.500 000 082 
0.500 000 022 
0.500 000 01 1 
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where the function U takes the formal series expansion 

U(&?)=A(  1 +  k = l  2 U?A(&?)'). 

Since U depends only on the product 677, we can multiply both equations (14), obtaining 

5/77' = 577. (16) 
The square hyperbolae 577 = constant are therefore open invariant curves of the Birkhoff 
map, just as X Y  = constant are invariant curves of the linear approximation to (12). 
The 5 axis and  the 77 axis map respectively onto the unstable and the stable manifolds 
of the fixed point at the origin of the standard map ( 5 ) .  

Birkhoff did not establish the convergence of the formal series (13) and (15). 
Indeed, the corresponding series for a stable fixed point are known to be divergent. 
However, Moser (1956) did prove convergence of these series in a disc surrounding 
the origin, with the condition that the series (12) represent an  analytic function, as in 
this case. In other words, the Birkhoff-Moser theorem guarantees the existence of an 
analytical transformation (13), taking the (standard) map into (14), where U is an 
analytic function of the product 67. Da Silva Ritter et a1 (1987) showed that if the 
inverse map is also analytic, as in (6), then the region of convergence of the series in 
fact extends indefinitely far out in a narrow strip along the stable and unstable 
manifolds, though the width of the strip narrows exponentially. Computations presen- 
ted there for a quadratic family of maps confirm earlier results of Ozorio de  Almeida 
et a1 (1985) that the Birkhoff normal form provides an  excellent basis for the calculation 
of homoclinic points. 

Defining the auxiliary series 
h f (Z'"+' )k/ [k- '7) /  (17) (AX - A - '  y)2n+'  Z2"+l 

h = Z n + l  /=0 

and introducing (13) into both sides of (12), we obtain the recurrence relations 

-A k - 2 l  
, v h - 2 n , / - - n (  Uh-?')Zn 

I1 =o  

where the last sum in both equations extends as far as xA. [ .  and yk'/' have non-negative 
indices. The unstable manifold is the image of the  6 axis given by the odd-powered series 

The recursion relations for xko and yko are independent of those for the other coefficients, 
taking the simple form 
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If we consistently neglect all terms of order A- '  in the coefficients x k o  and y,,, we can 
therefore resum the series (19) in the form 

X = ( l - a / h ) t + a  sin([/A) 

Y = ( - a / h ) S + a  sin([/h). 

Inverting the linear transformation ( l o ) ,  we thus obtain the approximate parametric 
equations for the unstable manifold as 

6 = [ / A  f = [ 1 - ( a  + 1 ) /  A][ + a sin( [/ A ) .  ( 2 2 )  

The stable manifold is the image of the 77 axis 
Q. X 

k y = q +  1 Y k k v  
k = 3  

x= c X k k V k  
k = 3  

whose odd-indexed coefficients are given by 

Consequently we can also resum the series ( 2 3 ) ,  thus obtaining 

X = ( -a/A3)77 + ( c x / A )  sin( v/A') 
Y = (1 - a / A ) g  + ah sin( 7 / A 2 )  

if we neglect terms of order A - *  in the coefficients. Once again we can invert the linear 
transformation ( 1 0 )  so as to obtain the approximate parametric equations for the stable 
manifold. However, these are simpler if we rotate the (e, I )  axes by 45". Since we 
will consider the intersection of the unstable manifold with the stable manifold which 
converges onto the fixed point at ( 2 ~ ,  0), we use the full linear transformation: 

6 = 2 ~ + 2 - " * (  6 ' -  f') I = 2-"*( 6' + I'). ( 2 6 )  

The stable manifold then has equations 

I f =  - 2 - 1 / 2 [ 1  - 2 ( h  -a)]A-277+21'Za sin(A-*r]). ( 2 7 )  6 ' =  - 2 - 1 / 2 A - ' 7 7  

The homoclinic points are thus approximately given by the intersection of the two 
curves: 

f = [ ( a  + 2 ) - '  - ( a  + 1 ) ] 6 +  a sin 6 

1 ' -  - 3 6 ' + 2 1 / 2 a  ~ i n ( 2 I / ~ O ' )  

using the fact that 

a = A - 2 + O ( A - ' ) .  (29) 
They represent the unstable and stable manifolds, respectively, close to the origin. Far 
from the origin the terms of order A - 2 ,  which have been neglected, are multiplied by 
large powers of 6 or 77. The simple sinusoidal form ( 2 8 )  eventually fails, even though 
the full series for the manifolds remains convergent. The problem with the series is 
then computational-we have to deal with very large numbers multiplied by very small 
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coefficients. However, all we need is to compute two distinct homoclinic points P+ 
and P- with normal coordinates ((+, 0) and (0, 7,). The respective homoclinic orbits 
will also be linearly related, according to the first equations in (22) and (27) .  

For both manifolds the first sinusoidal loops have amplitudes which grow linearly 
with a, while the frequency of oscillation remains approximately constant. This 
behaviour is shown in figure 3. We obtain one homoclinic point, P-, from the 

I 

R 

Figure 3. Homoclinic crossing for two values of a = 4 (full curve) and 8 (broken curve) 
using the approximate normal form expressions (28).  

I 2  5 
a 

3 

Figure 4. Behaviour of & ( a )  as computed from the normal form (full  curve) and from 
(30) where terms of O(h-’)  are neglected (broken curve). 
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intersection where both manifolds are approximately linear and the other, P,, from 
the first return of either the stable or the unstable manifold. I t  is preferable to use the 
return of the unstable manifold, since the intersection will then occur for a smaller 
&+ = AB+ than the T +  obtained from the other alternative. As a becomes large we thus 
obtain a first approximation to the stable manifold by linearising the second equation 
(28). The homoclinic point P- is then given approximately by linearising the unstable 
manifold around 6 = 0 and P+ is obtained by linearising this manifold around 8 = 7r, 
as justified by the discussion in 0 2. The result, neglecting terms O(A-*), is 

e, = 7T 6-  = 2 7 / ( 3 +  a ) .  (30) 

This simple approximation for 8. is much cruder than computing the intersection of 
I (  e )  and Z’( 0’) in (28), though it gives e+ exactly. It is also easily verified that, within 
the present approximation, the image of ( e - ,  I - )  by the standard map has 8 coordinate 
27r - e-, as required by symmetry considerations. Figure 4 compares e-( a )  as computed 
directly from the normal form and from (30). The latter deviates strongly for a < 2. 
In principle, we can take the normal form approximation to arbitrarily small a, but 
in practice we then have slow convergence as well as decreasing angles between the 
intersecting manifolds, leading to errors in the homoclinic point, computed in table 1 
for l S a S 9 .  

4. Discommensuration energies 

Truncation of the normal form provides a uniform approximation for the energy of a 
discommensuration. By this we mean that, besides the truncation error and the error 
in evaluating the phase-space coordinates of a single intersection of the stable and 
unstable manifolds, no more errors are introduced from the rest of the homoclinic 
orbit, whose 8, coordinates are then introduced in (3). There is no other method which 
specifies precisely the homoclinic orbit as it accumulates on the fixed point without 
running into problems with exponential instability. Here, the orbit is simply given by 
the normal form image of (A-’&*, 0) and (0, K I T * ) .  These points can be computed as 
close to the fixed point as we like. 

We can estimate the remainder of the energy on stopping at A -’&+ in an asymptoti- 
cally exact way as J + w .  To do this we note that the normal form transformation 
becomes the identity for ([+O, 01, i.e. the homoclinic coordinates Of, for j > J  are 
simply obtained by inverting the linear transformation ( lo) ,  taking Y = 0 and X = A - J [ * :  

(31 )  
In this region we can also expand the potential about 0 = 0, so the energy tail is given 
by 

e,, = A -’[J ( 1 + A - I  ). 

For large A we need not worry about this energy tail. Indeed we need to keep only 
three points in the orbit of P, and two points on the orbit of P-, if we neglect terms 
of the order of A-’  as in the previous section. The soliton energy is then simply 

@,=- ; ( 27- ; la”) + 2a [ 1 - cos( &)I (33) 
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whereas the energy corresponding to the orbit of P+ is just 

am = +{ n2+ [ K I T  + a sin(A-’~)]’)  + 2 a [ 2  -cos( A -  I n ) ] .  ( 3 4 )  

In both cases the first term is the elastic (kinetic) energy, while the second is the 
potential energy 1, V ( 8 , ) .  Note that the mass on top of the potential hump pushes 
up the energy, am, with slope d+,/da + 2 as a +a, whereas the soliton energy, as, 
tends to stabilise this behaviour. Figure 5 compares the exact Os, computed from the 
normal form, with that given by ( 3 3 )  as well as the pinning energy Om -as computed 
both ways. 

The third curve for the pinning energy is 

3 2 ~ ’  exp( -n2 /a1 ’2)  (35) 

derived by Pokrovsky (1981) after a series of approximations, all of which assume that 
a << 1. Even Pokrovsky’s definition of pinning energy differs from ours (Aubry’s), as 
it measures the energy difference between the continuum approximation and the soliton. 
Nonetheless, Pokrovsky’s ansatz works well for a - 10, even though this range is so 
far from the continuum that two or three masses already supply a good estimate for 
the energies. As a + 00 ( 3 5 )  has the wrong form, since it levels off at 3 2 n ’  instead of 
increasing with a slope of 2 a .  In this respect, Pokrovsky’s alternative form 

16x2/sinh( n2/ CY”’) (36) 

is preferable, for it increases, though only with In both cases we are saved by 
the large factor r 2  and the square-root dependence on a. Thus it is only for (Y - 100 
that the exponent in ( 3 5 )  has a modulus of unity. 

‘2 
51 1 5 10 

a a 

Figure S. ( a )  Comparison of the exact (full curve) value of @,(A) and “(B) computed 
from the normal form with that given by the approximate expression (33)  and (34) (broken 
curve) as a varies from 1 to 9. ( b )  Comparison of the pinning energy Dm-QS calculated 
via normal form (full curve), normal form with terms of O(h-’)  neglected (broken curve) 
and Pokrovsky’s expression (dotted curve) for a in the range o f  1 to 10. 
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5. Conclusions 

The Birkhoff normal form provides analytical expressions for the stable and unstable 
manifold at  the origin of the standard map. Truncation of the normal form provides 
excellent approximations to the pair of homoclinic orbits that determine the energies 
of a discommensuration in the Frenkel-Kontorova model. The series for the manifolds 
can be resummed in the limit cy + CC into simple closed forms, which adequately portray 
their first homoclinic windings. We hence derive very simple approximations for the 
discommensuration energies, valid far beyond the chaotic threshold of cy - 1. 

The agreement of the pinning energy thus computed with Pokrovsky's ansatz is a 
puzzle. It would be interesting to derive equivalent expressions for the discommensur- 
ations of periodic orbits of period 2 ,3 ,  . . . to verify if the continuum limit still furnishes 
approximations which can be extrapolated into the chaotic range. More plausible is 
the conjecture that replacing cy by A - 2 ,  according to (29), in the approximation for 
the energies may provide reasonable results for these higher discommensurations. In 
other words, it is possible that the energy of a discommensuration to a periodic orbit 
of period n depends basically on the eigenvalue A, of the fixed point of the nth power 
of the map. However, it may be that such self-similarity between homoclinic orbits 
only manifests itself in the limit of n + E, as in the case of period-doubling bifurcations. 
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